MediaEval 2014: THU-HCSIL Approach to Emotion in Music Task using Multi-level Regression

نویسندگان

  • Yuchao Fan
  • Mingxing Xu
چکیده

This working notes paper describes the system proposed by THU-HCSIL team for dynamic music emotion recognition. The procedure is divided into two module feature extraction and regression. Both feature selection and feature combination are used to form the final THU feature set. In regression module, a Booster-based Multi-level Regression method is presented, which outperforms the baseline significantly on test data in RMSE metric for dynamic task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Munich LSTM-RNN Approach to the MediaEval 2014 "Emotion in Music'" Task

In this paper we describe TUM’s approach for the MediaEval’s “Emotion in Music” task. The goal of this task is to automatically estimate the emotions expressed by music (in terms of Arousal and Valence) in a time-continuous fashion. Our system consists of Long-Short Term Memory Recurrent Neural Networks (LSTM-RNN) for dynamic Arousal and Valence regression. We used two different sets of acousti...

متن کامل

Predicting Affect in Music Using Regression Methods on Low Level Features

Music has been shown to impact the affective states of the listener. The emotion in music task at the MediaEval challenge 2015 focuses on predicting the affective dimensions of valence and arousal in music using low level features. In particular, this edition of the challenge involves prediction on full length songs given a training set containing smaller 30 second clips. We approach the proble...

متن کامل

Multi-Scale Approaches to the MediaEval 2015 "Emotion in Music" Task

The goal of the “Emotion in Music” task in MediaEval 2015 is to automatically estimate the emotions expressed by music (in terms of Arousal and Valence) in a time-continuous fashion. In this paper, considering the high context correlation among the music feature sequence, we study several multiscale approaches at different levels, including acoustic feature learning with Deep Brief Networks (DB...

متن کامل

Emotion in Music Task at MediaEval 2014

Emotional expression is an important property of music. Its emotional characteristics are thus especially natural for music indexing and recommendation. The Emotion in Music task addresses the task of automatic music emotion prediction and is held for the second year in 2014. As compared to previous year, we modified the task by offering a new feature development subtask, and releasing a new ev...

متن کامل

MediaEval 2015: JKU-Tinnitus Approach to Emotion in Music Task

This paper describes the JKU-Tinnitus submission to the “Emotion in Music” task [1] of the 2015 MediaEval Benchmark. Given a set of manually annotated music and a set of features for each music file, machine learning algorithms are applied to estimate the development of emotional arousal and valence over the course of a piece of music. Our pipeline roughly contains feature extraction from the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014